

DCJ-003-1164002 Seat No. _____

M. Sc. (Sem. IV) (CBCS) Examination

July - 2022

Mathematics: CMT-4002

(Integration Theory)

Faculty Code: 003

Subject Code: 1164002

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions:

- (1) Each question carries 14 marks.
- (2) There are 5 questions in total.
- 1 Answer the following questions:

14

- (a) Define : Counting Measure. Also find the counting measure of a set $A = [0,2022] \cap \mathbb{N}$.
- (b) Give the statement of Radon Nikodym Theorem for signed measure.
- (c) Let (X, \mathcal{A}, μ) , (Y, \mathcal{B}, γ) be complete measure spaces. Then prove that, $R = \{A \times B \subset X \times Y / A \in \mathcal{A} \text{ and } B \in \mathcal{B}\}$ is a semi-algebra.
- (d) Prove that : A function is continuous if and only if it is lower semi continuous as well as upper semi continuous.
- (e) If μ^* is an outer measure on a set X and $\beta \in P(X)$ be such that $\mu^*\beta = 0$ then prove that, β is μ^* measurable.
- (f) Prove that, every compact subset of K of a Hausdorff space is closed.
- (g) Define terms : σ -compact, Bounded, σ -Bounded sets.

2 Answer any two questions:

(a) Define : σ -algebra of subset of a set X. If X is any set $x_0 \in X$ then prove that, $\mu: P(X) \to \{0,1\}$ defined by

$$\mu(A) = \begin{cases} 1 & \text{; if } x_0 \in A \\ 0 & \text{; if } x_0 \in X - A \end{cases}$$

is measure on (X,P(X)).

- (b) Define: Measure absolutely continuous with respect to another measure and mutually singular measures. If (X,A) is a measurable space and γ, μ are signed measures on $(X,A), \gamma \perp \mu, \gamma \ll \mu$ then prove that $\gamma = 0$.
- (c) Let γ be a signed measure on (X,A). Prove that, \exists unique measures γ^+ and γ^- on (X,A) such that $\gamma = \gamma^+ \gamma^-$ on $A, \gamma^+ \perp \gamma^-$, where γ^+ and γ^- are positive and negative part of γ respectively.
- **3** Answer the following questions :

14

14

- (a) Let μ be a measure on algebra A of subset of a set X and μ^* be the outer measure on X induced by μ . Prove that, every element of A is μ^* measure.
- (b) If μ^* is an outer measure on a set X and $B = \{E \subseteq X/E \text{ is } \mu^* \text{measurable}\}$. Prove that, B is σ -algebra of subset of X.

OR

3 Answer the following questions:

14

(a) Let (X,A,μ) be a finite complete measure space, p,q be extended nonnegative real numbers such that $\frac{1}{p} + \frac{1}{q} = 1$, g be integrable on (X,A,μ) and $\left| \int_X g \phi d\mu \right| \leq M \cdot \left\| \phi \right\|_p$, for all simple measurable function ϕ on X for some M>0. Prove that, $g \in L^q(\mu)$.

 $\mathbf{2}$

- (b) If X is a countable set and μ is the counting measure on (X, P(X)). Prove that, $L^p(\mu) \cong l^p, 1 \leq p \leq \infty$.
- 4 Answer any two questions:

14

- (a) State and prove: Carthrodry Extension Theorem.
- (b) Let (X,A) be a measure space and $f: X \to [0,\infty]$ be a measurable. Prove that, \exists a sequence $\{s_n\}_{n=1}^{\infty}$ of non negative simple function on (X,A) such that
 - 1. $s_1 \le s_2 \le ... \le s_n \le ... \le f$ on X.
 - 2. $\lim_{n\to\infty} s_n(x) = f(x), \forall x \in X$.
- (c) Let \mathbb{C} be a semi algebra of subset of a set S and $\mu: \mathbb{C} \to [0,\infty]$ be such that
 - 1. $c \in \mathbb{C}, c = \bigcup_{i=1}^{n} c_i$. Prove that, $\mu(c) = \sum_{i=1}^{n} \mu(c_i), \forall n \in \mathbb{N}, c_i \in \mathbb{C} \text{ and } c_i \cap c_j = \emptyset, \forall i, j.$
 - 2. $c \in \mathbb{C}, c = \bigcup_{n=1}^{\infty} c_n$. Prove that, $\mu(c) = \sum_{n=1}^{\infty} \mu(c_n), \forall c_i \in \mathbb{C} \text{ and } c_i \cap c_j = \emptyset, \forall i, j.$
- 5 Answer any two questions:

14

- (a) Let X be a locally compact T_2 space, Let K be a compact G_{δ} set in X. Prove that, $\exists f \in C_c(X)$ such that
 - 1. $f(x) = 1, \forall x \in K$
 - $2. \qquad 0 \le f(x) < 1, \ \forall x \in X K$
- (b) Define: Baire measure on the real line. Let $f: \mathbb{R} \to \mathbb{R}$ be monotonically increasing and continuous function on the right. Prove that, \exists a baire measure μ on the real line such that $\mu(a,b] = f(a) f(b), \forall a,b \in \mathbb{R}$ and a < b.

- (c) Let X be a locally compact separable metric space. Prove that, $B_0(X) = B_a(X)$.
- (d) Prove that: Let X be a topological space.
 - 1. For $U \subseteq X$, $\chi_U : X \to \{0,1\}$ is lower semi continuous if and only if U is open in X.
 - 2. If $f_{\alpha}: X \to \{0,1\}$ are lower semi continuous, $\forall \alpha \in \Lambda$ then prove that $\sup_{\alpha \in \Lambda} f_{\alpha}$ is also lower semi continuous on X.

DCJ-003-1164002]